Bayesian Nonparametric Modeling in Quantile Regression
نویسندگان
چکیده
We propose Bayesian nonparametric methodology for quantile regression modeling. In particular, we develop Dirichlet process mixture models for the error distribution in an additive quantile regression formulation. The proposed nonparametric prior probability models allow the data to drive the shape of the error density and thus provide more reliable predictive inference than models based on parametric error distributions. We consider extensions to quantile regression for data sets that include censored observations. Moreover, we employ dependent Dirichlet processes to develop quantile regression models which allow the error distribution to change nonparametrically with the covariates. Posterior inference is implemented using Markov chain Monte Carlo methods. We assess and compare the performance of our models using both simulated and real data sets.
منابع مشابه
A Nonparametric Model-based Approach to Inference for Quantile Regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by traditional mean regression. We develop a Bayesian method for fully nonparametric model-based quantile regression. The approach invo...
متن کاملModel-based approaches to nonparametric Bayesian quantile regression
In several regression applications, a different structural relationship might be anticipated for the higher or lower responses than the average responses. In such cases, quantile regression analysis can uncover important features that would likely be overlooked by mean regression. We develop two distinct Bayesian approaches to fully nonparametric model-based quantile regression. The first appro...
متن کاملA Bayesian Nonparametric Approach to Inference for Quantile Regression
We develop a Bayesian method for nonparametric model–based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads ...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملVariational Inference for Nonparametric Bayesian Quantile Regression
Quantile regression deals with the problem of computing robust estimators when the conditional mean and standard deviation of the predicted function are inadequate to capture its variability. The technique has an extensive list of applications, including health sciences, ecology and finance. In this work we present a nonparametric method of inferring quantiles and derive a novel Variational Bay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007